Strong edge-magic graphs of maximum size

نویسندگان

  • Jim A. MacDougall
  • Walter D. Wallis
چکیده

An edge-magic total labeling on G is a one-to-one map λ from V (G) ∪ E(G) onto the integers 1, 2, . . . , |V (G) ∪ E(G)| with the property that, given any edge (x, y), λ(x) + λ(x, y) + λ(y) = k for some constant k. The labeling is strong if all the smallest labels are assigned to the vertices. Enomoto et al. proved that a graph admitting a strong labeling can have at most 2|V (G)| − 3 edges. In this paper we study graphs of this maximum size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on the size of super edge-magic graphs depending on the girth

Let G = (V,E) be a graph of order p and size q. It is known that if G is super edge-magic graph then q ≤ 2p− 3. Furthermore, if G is super edge-magic and q = 2p− 3, then the girth of G is 3. It is also known that if the girth of G is at least 4 and G is super edge-magic then q ≤ 2p − 5. In this paper we show that there are infinitely many graphs which are super edge-magic, have girth 5, and q =...

متن کامل

On super edge-magic graphs which are weak magic

A (p,q) graph G is total edge-magic if there exits a bijection f: Vu E ~ {1.2,. .. ,p+q} such that for each e=(u,v) in E, we have feu) + fee) + f(v) as a constant. For a graph G, denote M(G) the set of all total edge-magic labelings. The magic strength of G is the minimum of all constants among all labelings in M(G), and denoted by emt(G). The maximum of all constants among M(G) is called the m...

متن کامل

Dense edge-magic graphs and thin additive bases

A graph G of order n and size m is edge-magic if there is a bijection l : V (G) ∪E(G) → [n+m] such that all sums l(a) + l(b) + l(ab), ab ∈ E(G), are the same. We present new lower and upper bounds on M(n), the maximum size of an edge-magic graph of order n, being the first to show an upper bound of the form M(n) ≤ (1 − ǫ) ( n 2 ) . Concrete estimates for ǫ can be obtained by knowing s(k, n), th...

متن کامل

Enumerating super edge-magic labelings for the union of non-isomorphic graphs

A super edge-magic labeling of a graph G = (V, E) of order p and size q is a bijection f : V ∪E → {i} i=1 such that (1) f(u)+ f(uv)+ f(v) = k ∀uv ∈ E and (2) f(V ) = {i}pi=1. Furthermore, when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property that if uv ∈ E(G), u′, v′ ∈ V (G) and dG(u, u′) = dG(v, v′) < +∞, then f(u) + f(v) = f(u′) + f(v′). I...

متن کامل

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008